(本小题满分12分) 已知数列是公差不为
的等差数列,其前
项和为
,且
成等比数列.
(Ⅰ)求的通项公式;
(Ⅱ)是否存在正整数,使
仍为数列
中的一项?若存在,求出满足要求的所有正整数
;若不存在,说明理由.
如图,在底面为平行四边形的四棱锥中,
,
平面
,且
,点
是
的中点.
(1)求证:;
(2)求二面角的大小.
|
如图,为圆
的直径,点
.
在圆
上,且
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(1)设的中点为
,求证:
平面
;
(2)求四棱锥的体积.
已知命题:方程
所表示的曲线为焦点在
轴上的椭圆;命题
:实数
满足不等式
.
(1)若命题为真,求实数的取值范围;
(2)若命题是命题
的充分不必要条件,求实数
的取值范围.
定义:对于函数,若在定义域内存在实数
,满足
,则称
为“局部奇函数”.
(1)已知二次函数,试判断
是否为定义域
上的“局部奇函数”?若是,求出满足
的
的值;若不是,请说明理由;
(2)若是定义在区间
上的“局部奇函数”,求实数
的取值范围;
(3)若为定义域
上的“局部奇函数”,求实数
的取值范围.
已知:如图,等腰直角三角形的直角边
,沿其中位线
将平面
折起,使平面
⊥平面
,得到四棱锥
,设
、
、
、
的中点分别为
、
、
、
.
(1)求证:、
、
、
四点共面;
(2)求证:平面平面
;
(3)求异面直线与
所成的角.