游客
题文

(本小题满分14分)如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG.

(1) 求证:HG∥平面ABC;
(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用 平行线法
登录免费查看答案和解析
相关试题

在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ-)=.
(1)求圆O和直线l的直角坐标方程.
(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.

已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程.
(2)求经过两圆交点的直线的极坐标方程.

从原点O引直线交直线2x+4y-1=0于点M,P为OM上一点,已知OP·OM=1,求P点所在曲线的极坐标方程.

在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ=2sinθ与ρcosθ=1的交点Q的极坐标.

已知曲线C:ρsin(θ+)=,曲线P:ρ2-4ρcosθ+3=0,
(1)求曲线C,P的直角坐标方程.
(2)设曲线C和曲线P的交点为A,B,求|AB|.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号