(本小题共12分)
已知向量,函数
.
(Ⅰ)求函数的最小正周期
;
(Ⅱ)已知、
、
分别为
内角
、
、
的对边, 其中
为锐角,
,且
,求
和
的面积
.
(本小题满分12分)
设数列的前
项和为
,且
;数列
为等差数列,且
.
(1)求数列的通项公式;
(2)若(
=1,2,3…),
为数列
的前
项和.求
.
(本小题满分12分)已知
(Ⅰ)求函数的单调增区间
(Ⅱ)在中,
分别是角
的对边,且
,求
的面积.
如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴
长的2倍,且经过点M. 平行于OM的直线
在
轴上的截距为
并交椭
圆C于A、B两个不同点.
(1)求椭圆C的标准方程;
(2)求m的取值范围;
(3)求证:直线MA、MB与x轴始终围成一个等腰三角形.
设定点M,动点N在圆
上运动,线段MN的
中点为点P.
(1)求MN的中点P的轨迹方程;
(2)直线与点P的轨迹相切,且
在
轴.
轴上的截距相等,求直线
的方程.
某工厂计划生产A.B两种涂料,生产A种涂料1t需要甲种原料
1t.乙种原料2t,可获利润3千元;生产B种涂料1t需要甲种原料2t,乙种原料1t,
可获利润2千元,又知该工厂甲种原料的用量不超过400t,乙种原料的用量不超过500t,
问如何安排生产才能获得最大利润?(注:t表示重量单位“吨”)