游客
题文

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.图是甲流水线样本的频率分布直方图,表是乙流水线样本频数分布表.

(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数的数学期望;
(Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数的分布列;
(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .

 
甲流水线
乙流水线
 合计
合格品


 
不合格品


 
合 计
 
 


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

附:下面的临界值表供参考:
(参考公式:,其中)

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

(本小题满分12分)
已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点).
(1)数列的通项公式
(2)若,记,求证:.

(本小题满分12分)
如图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:

(1)求二面角B-AC-D的大小;
(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。

..(本小题满分12分)
已知:
函数.
(1)化简的解析式,并求函数的单调递减区间;
(2)在△ABC中,分别是角A,B,C的对边,已知,△ABC的面积为,求的值.

(本小题满分12分)
已知函数在点x=1处的切线与直线垂直,且f(-1)=0,求函数f(x)在区间[0,3]上的最小值。

本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分
已知曲线的方程为为曲线上的两点,为坐标原点,且有
(1)若所在直线的方程为,求的值;
(2)若点为曲线上任意一点,求证:为定值;
(3)在(2)的基础上,用类比或推广的方法对新的圆锥曲线写出一个命题,并对该命题加以证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号