数列{an}的前n项和为Pn,若(n∈N*),数列{bn}满足2bn+1=bn+bn+2(n∈N*),且b3=7,b8=22.
(1)求数列{an}和{bn}的通项公式an和bn;
(2)设数列cn=anbn,求{cn}的前n项和Sn.
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若,求
的单调区间.
已知数列是公差不为零的等差数列,
且
成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列
的前n项和.
函数的图象与函数
的图象交于两点
(
在线段
上,
为坐标原点),过
作
轴的垂线,垂足分别为
,并且
分别交函数
的图象于
两点.
(1)试探究线段的大小关系;
(2)若平行于
轴,求四边形
的面积.
(本小题满分16分)
如图,多面体中,
两两垂直,平面
平面
,
平面平面
,
.
(1)证明四边形是正方形;
(2)判断点是否四点共面,并说明为什么?
(3)连结,求证:
平面
.
(本小题满分16分)如图①,,
分别是直角三角形
边
和
的中点,
,沿
将三角形
折成如图②所示的锐二面角
,若
为线段
中点.求证:
(1)直线平面
;
(2)平面平面
.