.汽车从A地开往B地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B地.求AB两地的距离及原计划行驶的时间.
如图,在平面直角坐标系中, 为等腰直角三角形, ,抛物线 经过 , 两点,其中点 , 的坐标分别为 , ,抛物线的顶点为点 .
(1)求抛物线的解析式;
(2)点 是直角三角形 斜边 上的一个动点(不与 , 重合),过点 作 轴的垂线,交抛物线于点 ,当线段 的长度最大时,求点 的坐标;
(3)在(2)的条件下,抛物线上是否存在一点 ,使 是以 为直角边的直角三角形?若存在,求出所有点 的坐标;若不存在,请说明理由.
如图, 是 的外接圆, 为直径, 的平分线交 于点 ,过点 的切线分别交 , 的延长线于 , ,连接 .
(1)求证: ;
(2)若 , ,求 的半径.
如图,在四边形 中, , 平分 , ,垂足为点 .
(1)求证:四边形 是菱形;
(2)若 , ,求四边形 的面积.
政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的 ,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.
如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面 , 两处均探测出建筑物下方 处有生命迹象,已知在 处测得探测线与地面的夹角为 ,在 处测得探测线与地面的夹角为 ,求该生命迹象 处与地面的距离.(结果精确到0.1米,参考数据: ,