已知椭圆C:+
=1(a>b>0),直线y=x+
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同
两点A,B且线段AB的垂直平分线过定点C(
,0)求实数k的取值范围。
某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
.
优秀 |
非优秀 |
合计 |
|
甲班 |
10 |
||
乙班 |
30 |
||
合计 |
110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.附:
证明:在复数范围内,方程(
为虚数单位)无解.
已知幂函数,且
在
上单调递增.
(1)求实数的值,并写出相应的函数
的解析式;
(2)若在区间
上不单调,求实数
的取值范围;
(3)试判断是否存在正数,使函数
在区间
上的值域为
若存在,求出
的值;若不存在,请说明理由.
已知是
的三个内角,向量
,且
.
(1)求角;
(2)若,求
.
如图,在底面是直角梯形的四棱锥S-ABCD中,
(1)求四棱锥S-ABCD的体积;
(2)求证:
(3)求SC与底面ABCD所成角的正切值。