如图,在底面是直角梯形的四棱锥S-ABCD中,
(1)求四棱锥S-ABCD的体积;
(2)求证:
(3)求SC与底面ABCD所成角的正切值。
(本小题满分12分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
![]() |
0 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
![]() |
0 |
5 |
![]() |
0 |
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;
(Ⅱ)令g(x)="f" (x+)—1,当x∈[—
,
] 时,若存在g(x)<a—2成立,求实数a的取值范围.
(本小题满分10分)已知、
、
是同一平面内的三个向量,其中
,
,
(1)若,求
;
(2)若与
共线,求
的值.
(本小题12分)圆C的半径为3,圆心在直线上且在x轴下方,x轴被圆C截得的弦长为
.
(1)求圆C的方程;
(2)是否存在斜率为1的直线l,使得以l被圆截得的弦为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由.
(本小题12分)已知数列的前n项和为
,
,
.
(1)求数列的通项公式;
(2)求数列的前n项和
.
(本小题12分)某镇计划建造一个室内面积为800m2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地。当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?