已知椭圆的离心率为
,短轴的一个端点到右焦点的距离为2,
(1)试求椭圆
的方程;
(2)若斜率为的直线
与椭圆
交于
、
两点,点
为椭圆
上一点,记直线
的斜率为
,直线
的斜率为
,试问:
是否为定值?请证明你的结论.
已知函数的最大值是2,
其图象经过点
.
(1)求的解析式;
(2)已知,且
,
求的值.
(本小题满分14分)
已知函数的图象经过点A(2,1)和B(5
,2),记
(1)求数列的通项公式;
(2)设,若3-
恒成立,求
的最小值
(本小题满分14分)
矩形的两条对角线相交于点M(2,0),
边所在直线的方程为
,点T(-1,1)在
边所在直线上.
(1)求边所在直线的方程;
(2)求矩形外接圆的方程;
(3)若动圆过点N(-2,0),且与矩形
的外接圆外切,求动圆
的圆心的轨迹方程.
18.(本小题满分13分)
如图,直二面角中,四边形
是边长为
2的正方形,为CE上的点,且
平面
.
(1)求证:平面
;
(2)求三棱锥E-ABC的体积.
.(本小题满分13分)
某高校2011年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185)得到的频率分布直方图如图所示.
(1)求第3、4、5组的频率并估计这次考试成绩的众数
(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?