一位同学拿了两块三角尺
,
做了一个探究活动:将
的直角顶点
放在
的斜边
的中点处,设
.
(1)如图(1),两三角尺的重叠部分为
,则重叠部分的面积为 ,周长为
.
(2)将图(1)中的
绕顶点
逆时针旋转
,得到图26(2),此时重叠部分的面积为 ,周长为 .
(3)如果将
绕
旋转到不同于图(1)和图(2)的图形,如图(3)
,请你猜想此时重叠部分的面积为 .
(4)在图(3)情况下,若
,求出重叠部分图形的周长.
如图, 已知直线 与拋物线 交于 两点.
(1)求 两点的坐标;
(2)求线段 的垂直平分线的解析式;
(3)取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处,用铅笔拉着这根橡皮筋使笔尖 在直线 上方的抛物线上移动,动点 将与 构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点 的坐标;如果不存在,请简要说明理由.
已知二次函数 的图象开口向上,且经过点 .
(1)求 的值(用含 的代数式表示);
(2)若二次函数 在 时, 的最大值为1,求 的值;
(3)将线段 向右平移 个单位得到线段 .若线段 与抛物线 仅有一个交点,求 的取值范围.
如图,抛物线 与 轴交于 两点,与 轴交于 点, .
(1)求拋物线的解析式;
(2)在第二象限内的拋物线上确定一点 ,使四边形 的面积最大,求出点 的坐标;
(3)在(2)的结论下,点 为 轴上一动点,抛物线上是否存在一点 ,使点 为顶点的四边形是平行四边形,若存在,请直接写出 点的坐标;若不存在,请说明理由.
在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为 元,并且每周( 天)涨价 元,从第 周开始保持 元的价格平稳销售;从第 周开始,当季节即将过去时,平均每周减价 元,直到第 周周末,该服装不再销售.
(1)试建立销售价 与周次 之间的函数关系式;
(2)若这种时装每件进价 与周次 之间的关系为 ,且 为整数,试问该服装第几周出售时,每件销售利润最大,最大利润为多少?
已知二次函数 的图象经过两点 .
(1)如果 都是整数,且 ,求 的值;
(2)设二次函数 的图象与 轴的交点为 ,与 轴的交点为 .如果关于 的方程 的两个根都是整数,求 的面积.