.(14分)已知椭圆+
=1(a>b>0)的左、右焦点分别是F1(-c,0),F2(c,0),Q是椭圆外的动点,满足
=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
,
(1)设x为点P的横坐标,证明=a+
x;
(2)求点T的轨迹C的方程;
(3)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2?若存在,求∠F1MF2的正切值;若不存在,请说明理由.
已知函数x,y满足x≥1,y≥1loga2x+loga2y=loga(ax2)+loga(ay2)(a>0且a≠1),求loga(xy)的取值范围.
已知函数f(x)=logax(a>0且a≠1),(x∈(0,+∞)),若x1,x2∈(0,+∞),判断[f(x1)+f(x2)]与f(
)的大小,并加以证明.
设函数f(x)=loga(x-3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图像上的点时,点Q(x-2a,-y)是函数y=g(x)图像上的点.
(1)写出函数y=g(x)的解析式;
(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围.
已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-)=0,当x>-
时,f(x)>0.
(1)求证:f(x)是单调递增函数;
(2)试举出具有这种性质的一个函数,并加以验证.
设函数f(x)的定义域关于原点对称且满足:
(i)f(x1-x2)=;
(ii)存在正常数a使f(a)=1求证:
(1)f(x)是奇函数.
(2)f(x)是周期函数,且有一个周期是4.