已知,函数
,
(其中
为自然对数的底数).(1)判断函数
在
上的单调性;
(2)是否存在实数,使曲线
在点
处的切线与
轴垂直? 若存在,
求出的值;若不存在,请说明理由.
(3)若实数满足
,求证:
。
(本小题满分12分)
某工科院校对A,B两个专业的男女生人数进行调查,得到如下的列联表:
(I) 从B专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?
(II)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?
注:
(本小题满分12分)
某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.
(I)求AB的长度;
(Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
(本小题满分10分)
已知等差数列{},
为其前n项的和,
=0,
=6,n∈N*.
(I)求数列{}的通项公式;
(II)若=3
,求数列{
}的前n项的和.
已知函数.
(I)求函数的单调区间;
(Ⅱ)函数在区间[1,2]上是否有零点,若有,求出零点,若没有,请说明理由;
(Ⅲ)若任意的∈(1,2)且
≠
,证明:
(注:
(本小题满分12分)已知焦点在轴上的椭圆C1:
=1经过A(1,0)点,且离心率为
.
(I)求椭圆C1的方程;
(Ⅱ)过抛物线C2:(h∈R)上P点的切线与椭圆C1交于两点M、N,记线段MN与PA的中点分别为G、H,当GH与
轴平行时,求h的最小值.