.(本小题满分14分)设抛物线的方程为
,
为直线
上任意一点,过点
作抛物线
的两条切线
,切点分别为
,
.
(1)当的坐标为
时,求过
三点的圆的方程,并判断直线
与此圆的位置关系;
(2)求证:直线恒过定点;
(3)当变化时,试探究直线
上是否存在点
,使
为直角三角形,若存在,有几个这样的点,若不存在,说明理由.
在中,
分别为角
所对的边,且
,
(Ⅰ)求角;
(Ⅱ)若,
,
的周长为
,求函数
的取值范围.
(本12分)
设是平面上的两个向量,若向量
与
互相垂直.
(Ⅰ)求实数的值;
(Ⅱ)若,且
,求
的值.
( 12分).已知等差数列,
,
(1)求数列的通项公式
(2)设,求数列
的前
项和
函数在
一个周期内,当
时,
取最小值
;当
时,
最大值
.
(I)求的解析式;
(II)求在区间
上的最值
(本题12分)在2008年北京奥运会青岛奥帆赛举行之前,为确保赛事安全,青岛海事部门举行奥运安保海上安全演习.为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离为1千米的两个观察点C,D,在某天10:00观察到该航船在A处,此时测得∠ADC=30°,3分钟后该船行驶至B处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,求船的速度是多少千米/分钟.