(本小题满分13分)
已知f(x)=mx(m为常数,m>0且m≠1).
设f(a1),f(
a2),…,f(an)…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an·f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn;
(3)若cn=f(an)lgf(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,
求出m的范围;若不存在,请说明理由.
已知a为实数,x=1是函数的一个极值点。
(Ⅰ)若函数在区间
上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意
和
,有不等式
恒成立,求实数
的取值范围.
设△ABC的内角A,B,C所对的边分别为a,b,c且.
(Ⅰ)求角A的大小;
(Ⅱ)若a=1,求△ABC的周长的取值范围.
已函数是定义在
上的奇函数,在
上时
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式.
对于集合M,定义函数,对于两个集合M、N,定义集合
.已知
,
.
(Ⅰ)写出与
的值,
(Ⅱ)用列举法写出集合;
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数, e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;
(2)若存在x使不等式>
成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.