游客
题文

(本小题满分16分)  如图,在平面直角坐标系中,已知点为椭圆
的右顶点, 点,点在椭圆上, .
(1)求直线方程; (2)求直线被过三点的圆截得的弦长;
(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不
存在,请说明理由

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(本小题12分)某产品原来的成本为1000元/件,售价为1200元/件,年销售量为1万件。由于市场饱和顾客要求提高,公司计划投入资金进行产品升级。据市场调查,若投入万元,每件产品的成本将降低元,在售价不变的情况下,年销售量将减少万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为(单位:万元).(纯利润=每件的利润×年销售量-投入的成本)
(Ⅰ)求的函数解析式;
(Ⅱ)求的最大值,以及取得最大值时的值.

(本小题12分)在△ABC中,内角的对边分别为,且
(Ⅰ)求角的大小;
(II)若的值.

(本小题12分)如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.

(Ⅰ)求证:DM∥平面APC;
(II)求证:平面ABC⊥平面APC.

(本小题满分14分)
已知函数.
(Ⅰ)求的值;
(Ⅱ)若数列
求数列的通项公式;
(Ⅲ)若数列满足是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在,请求出的取值范围;若不存在,请说明理由.

(本小题满分12分)
已知点是区域,()内的点,目标函数的最大值记作.若数列的前项和为,且点()在直线上.
(Ⅰ)证明:数列为等比数列;
(Ⅱ)求数列的前项和.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号