为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(1)求x,y ;
(2)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。
选修4—1:几何证明选讲
如图,内接于圆
,
平分
交圆
于点
,过点
作圆
的切线交直线
于点
.
(1)求证:;
(2)求证:.
设函数,其中
.
(1)当时,证明不等式
;
(2)设的最小值为
,证明
.
在平面直角坐标系中,点
与点
关于原点
对称,
是动点,且直线
与
的斜率之积等于
.
(1)求动点的轨迹方程;
(2)设直线和
分别与直线
交于点
,问:是否存在点
使得
与
的面积相等?若存在,求出点
的坐标;若不存在,说明理由.
在一次考试中,5名同学数学、物理成绩如下表所示:
学生 |
A |
B |
C |
D |
E |
数学(x分) |
89 |
91 |
93 |
95 |
97 |
物理(y分) |
87 |
89 |
89 |
92 |
93 |
(1)根据表中数据,求物理分对数学分
的回归方程:
(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以表示选中的同学中物理成绩高于90分的人数,求随机变量
的分布列及数学期望
.(附:回归方程
中,
,
)
如图,在三棱柱中,已知
,
,
,
.
(1)求证:;
(2)设(
),且平面
与
所成的锐二面角的大小为30°,试求的值.