如图3所示,,M是棱
的中点,N是棱
的中点.
(1)求异面直线所成角的正弦值;
(2)求的体积.
已知定点P(6,4)与定直线l1:y=4x,过P点的直线l与l1交于第一象限Q点,与x轴正半轴交于点M,O为坐标原点,求使△OQM面积最小的直线l方程.
已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动.
(Ⅰ)求线段AB的中点轨迹方程M;
(Ⅱ)求轨迹M上的点到点P(5,4)的最小距离.
如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求直线AF与平面α所成角的正弦值.
已知圆C过A(4,1),且与直线x﹣y﹣1=0相切于点B(2,1),求圆C的标准方程.
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.