抛物线交
轴于
两点,交
轴于点
,对称轴为直线
。且A、C两点的坐标分别为
,
求抛物线
的解析式;
在对称轴上是否存在一个点
,使
的周长最小.若存在,请求出点
的坐标;若不存在,请说明理由.
如图,△ABC中,AB=AC=,cosC=
.
(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);
(2)综合应用:在你所作的图中,
①求证:;②求点D到BC的距离.
图1中的中国结挂件是由四个相同的菱形在顶点处依次串接而成,每相邻两个菱形均成30度的夹角,示意图如图2所示.在图2中,每个菱形的边长为10cm,锐角为60度.
(1)连接CD、EB,猜想它们的位置关系并加以证明;
(2)求A、B两点之间的距离(结果保留根号)
某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?
某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.
类别 |
科普类 |
教辅类 |
文艺类 |
其他 |
册数(本) |
128 |
80 |
m |
48 |
(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;
(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?
如图,点A、B、C分别是⊙O上的点,∠B=60°, CD是⊙O的直径,P是CD延长线上的点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)若AC= 3,求PD的长.