某汽车销售公司为促销采取了较灵活的付款方式,对购买10万元一辆的轿车在一年
内将款全部付清的前提下,可以选择以下两种分期付款方案购车:
方案1:分3次付清,购买后4个月第一次付款,再过4个月第二次付款,再过4个月第三次付款.
方案2:分12次付清,购买后1个月第一次付款,再过1个月第二次付款,……购买后12个月第十二次付款.现规定分期付款中,每期付款额相同,月利率为0.8%,每月利息按复利计息,试比较以上两种方案的哪一种方案付款总数较少?(参考数据:1.0083=1.024,1.0084=1.033,1.00811=1.092,1.00812=1.1)
(本小题满分14分)
如图,四面体ABCD中,O,E分别为BD,BC的中点,CA=CB=CD=BD=2,AB=AD=.
(1)求证:AO⊥平面BCD;
(2)求点E到平面ACD的距离.
本小题满分14分)
在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列.
(1)若=
,b=
,求a+c的值;
(2)求的取值范围.
(本小题满分16分)
已知数列满足
+
=4n-3(n∈
).
(1)若数列是等差数列,求
的值;
(2)当=2时,求数列
的前n项和
;
(3)若对任意n∈,都有
≥5成立,求
的取值范围.
(本小题满分16分)
已知函数=
+
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,)上单调递减,在(
,
上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.
(本小题满分16分)
已知F是椭圆:
=1的右焦点,点P是椭圆
上的动点,点Q是圆
:
+
=
上的动点.
(1)试判断以PF为直径的圆与圆的位置关系;
(2)在x轴上能否找到一定点M,使得=e (e为椭圆的离心率)?若存在,求出点M的坐标;若不存在,请说明理由.