(本小题满分16分)
已知数列满足
+
=4n-3(n∈
).
(1)若数列是等差数列,求
的值;
(2)当=2时,求数列
的前n项和
;
(3)若对任意n∈,都有
≥5成立,求
的取值范围.
(本小题满分12分)已知圆:
,直线
过定点
.
(Ⅰ)若与圆
相切,求
的方程;
(Ⅱ)若与圆
相交于
、
两点,求
的面积的最大值,并求此时直线
的方程.
(本小题满分12分)在中,角
所对的边分别为
,已知
,
(Ⅰ)求的大小;
(Ⅱ)若,求
的取值范围.
(本小题满分12分)
已知函数.
(Ⅰ)讨论函数在
上的单调性;
(Ⅱ)设,且
,求
的值.
已知圆x2+y2=1和双曲线(x-1)2-y2=1,直线l与双曲线交于不同两点A、B,且线段AB的中点恰是l与圆相切的切点,求直线l的方程.
已知椭圆C的方程为,点P(a,b)的坐标满足
,过点P的直线l与椭圆交于A、B两点,点Q为线段AB的中点,求:
(1)点Q的轨迹方程.
(2)点Q的轨迹与坐标轴的交点的个数.