某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
从某居民区随机抽取10个家庭,获得第
个家庭的月收入
(单位:千元)与月储蓄
(单位:千元)的数据资料,算得
,
,
,
.
(1)求家庭的月储蓄
对月收入
的线性回归方程
;
(2)判断变量
与
之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
其中
,
为样本平均值,线性回归方程也可写为
附:线性回归方程
中,
,
,
设过原点
的直线与圆
:
的一个交点为
,点
为线段
的中点。
(1)求圆
的极坐标方程;
(2)求点
轨迹的极坐标方程,并说明它是什么曲线.
已知
为复数,
为纯虚数,
,且
,求复数
.
已知函数
,
,其中
.
(1)若
是函数
的极值点,求实数
的值;
(2)若对任意的
(
为自然对数的底数)都有
≥
成立,求实数
的取值范围.
设函数f(x)=x2-mlnx,g(x)=x2-x+a.
(1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围;
(2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.