某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(本题13分)已知。
(1)若,求
上的最大值与最小值;
(2)当时,求证
;
(3)当时,求证:
(本题12分)某汽车厂有一条价值为万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值
万元与技术改造投入
万元之间满足:①
与
成正比;②当
时,
,并且技术改造投入满足
,其中
为常数且
。
(1)求表达式及定义域;
(2)求出产品增加值的最大值及相应的值。
(本题12分)函数的定义域为
,
(1)若,求函数
的值域;
(2)求函数在
上的最大值和最小值,并求出函数取最值时相应
的值。
(本题12分)已知数列的前
项和
,且
是
和1的等差中项。
(1)求数列与
的通项公式;
(2)若,求
;
(3)若是否存在
,使
?说明理由。
(本题12分)已知命题关于
的方程
有负根;命题
不等式
的解集为
,若
或
是真命题,
且
是假命题,求实数
的范围。