已知:函数f(x)=x-bx+3,且f(0)=f(4)。
(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;
(2)求函数y=f(x)在区间[0,3]上的最大值和最小值。
本题共有2个小题,第1小题满分6分,第2小题满分6分.
已知复数,
(
,
是虚数单位)。
(1)若复数在复平面上对应点落在第一象限,求实数
的取值范围
(2)若虚数是实系数一元二次方程
的根,求实数
的值.
、(本小题满分14分)
已知函数,数列
满足递推关系式:
(
),且
、
(Ⅰ)求、
、
的值;
(Ⅱ)用数学归纳法证明:当时,
;
(Ⅲ)证明:当时,有
、
(本小题满分13分)
已知函数、
(Ⅰ)求函数的单调区间;
(Ⅱ)若为正常数,设
,求函数
的最小值;
(Ⅲ)若,
,证明:
、
(本小题满分12分)
一个口袋中装有大小相同的个红球(
且
)和
个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖。
(Ⅰ)试用表示一次摸奖中奖的概率
;
(Ⅱ)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,求
的最大值?
(Ⅲ)在(Ⅱ)的条件下,将个白球全部取出后,对剩下的
个红球全部作如下标记:记上
号的有
个(
),其余的红球记上
号,现从袋中任取一球。
表示所取球的标号,求
的分布列、期望和方差。
(本小题满分12分)
如图,已知是直角梯形,
,
,
,
平面
.
(1) 证明:;
(2) 若是
的中点,证明:
∥平面
;
(3)若,求三棱锥
的体积.