甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.
(1).把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2).为了使全程运输成本最小,汽车应以多大速度行驶?
(本小题满分12分)函数在一个周期内,当
时,
取最小值1;当
时,
最大值3.(I)求
的解析式;(II)求
在区间
上的最值.
(本小题满分13分)
已知椭圆,以原点为圆心,椭
圆的短半轴为半径的圆与直线
相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结
交椭圆
于另一点,证明:直线
与x轴相交于定点
;
(3)在(2)的条件下,过点
的直线与椭圆
交于
、
两点,求
的取值
范围.
(本小题满分13分)
设数列为等差数列,且a5=14,a7=20。
(I)求数列的通项公式;
(II)若
(本小题满分13分)
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为
平方米.
(1)分别写出用表示
和
的函数关系式(写出函数定义域);
(2)怎样设计能使取得最大值,最大值为多少?
(本小题满分12分)
已知下列三个方程:至少有一个方程有实数根,求实数
的取值范围.