甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.
(1).把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2).为了使全程运输成本最小,汽车应以多大速度行驶?
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.
⑴求全班人数及分数在之间的频数;
⑵估计该班的平均分数,并计算频率分布直方图中间的矩形的高;
⑶若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在
之间的概率.
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,是
的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积。
(Ⅱ)若是
的中点,求证:
平面
;
(Ⅲ)求证:平面平面
.
已知在中,
,且
与
是方程
的两个根.
(Ⅰ)求的值;
(Ⅱ)若,求
的长.
如图,
四点在同一圆上,
的延长线与
的延长线交于
点,且
.
(I)证明:
;
(II)延长
到
,延长
到
,使得
,证明:四点共圆.
在平面直角坐标系xoy中,已知曲线C1:x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(Ⅰ)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程.
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.