现有两个项目,投资
项目
万元,一年后获得的利润为随机变量
(万元),根据市场分析,
的分布列为:
X1 |
12 |
11.8 |
11.7 |
P |
![]() |
![]() |
![]() |
投资项目
万元,一年后获得的利润
(万元)与
项目产品价格的调整(价格上调或下调)有关, 已知
项目产品价格在一年内进行
次独立的调整,且在每次调整中价格下调的概率都是
.
经专家测算评估项目产品价格的下调与一年后获得相应利润的关系如下表:
![]() ![]() |
![]() |
![]() |
![]() |
投资![]() ![]() |
![]() |
![]() |
![]() |
(Ⅰ)求的方差
;
(Ⅱ)求的分布列;
(Ⅲ)若,根据投资获得利润的差异,你愿意选择投资哪个项目?
(参考数据:).
(本题15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程。
(本题15分)已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥平面ABCD.
(1)求证:PF⊥FD;
(2)设点G在PA上,且EG//平面PFD,试确定点G的位置.
在正方体ABCD-A1B1C1D1中, AA1=2,E为棱CC1的中点.
(1)求三棱锥E-ABD的体积;
(2)求证:B1D1AE;
(3)求证:AC//平面B1DE.
(本题15分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE
(本题15分)根据下列条件,求圆的方程
(1)求经过两点,且圆心在y轴上的圆的方程。
(2)圆的的半径为1,圆心与点(1,0)关于对称的圆的方程。