游客
题文

对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”.
(Ⅰ)若,数列是否为“类数列”?若是,指出它对应的实常数,若不是,请说明理由;
(Ⅱ)证明:若数列是“类数列”,则数列也是“类数列”;
(Ⅲ)若数列满足为常数.求数列前2012项的和.并判断是否为“类数列”,说明理由.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

本小题满分12分)
设函数时取得极值.
(Ⅰ)求a、b的值(6分);
(Ⅱ)若对于任意的,都有成立,求c的取值范围(6分)

(本小题满分12分)已知函数>0,>0,的图象与轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为
(1)写出的解析式及的值;
(2)若锐角满足,求的值.

(本小题满分12分)
在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做每一道题的概率均为.
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为,求的概率分布及数学期望. 的解析

.已知关于x的一元二次方程x-2(a-2)x-b+16=0.
(1)若a、b是一枚骰子先后投掷两次所得到的点数,求方程有两个正实数根的概率;
(2)若a∈[2,6],b∈[0,4],求一元二次方程没有实数根的概率

已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个.
(1)从中任取1个球, 求取得红球或黑球的概率;
(2)从中一次取2个不同的球,试列出所有基本事件;并求至少有一个是红球概率。
(3)从中取2次,每次取1个球,在放回的条件下求至少有一个是红球概率。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号