钝角△ABC的三内角A、B、C所对的边分别为a、b、c,sinC= ,
(c-b)sin2A+bsin2B=csin2C,求角A、B、C.
(本题12分)
已知函数是定义在R上的偶函数, 当
时,
,
(1)求函数的解析式 ;
(2)求的值;
(3)若,求实数
的值.
(本小题满分9分)
在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断
它是否会进入警戒水域,并说明理由.
20.(本小题满分8分)如图,AB是⊙O的直径,PA⊥⊙O所在的平面,C是圆上一点,∠ABC = 30°,PA = AB.(1)求证:平面PAC⊥平面PBC;
(2)求直线PC与平面ABC所成角的正切值;
(3)求二面角A—PB—C的正弦值.
19.(本小题满分8分)已知,过点M(-1,1)的直线l被圆C:x2 + y2-2x + 2y-14 = 0所截得的弦长为4,求直线l的方程.
18.(本小题满分8分)已知圆心为C的圆经过点A(1,0),B(2,1),且圆心C在y轴上,求此圆的方程。