为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图,根据有关规定,成绩小于16秒为达标.
(Ⅰ)用样本估计总体,某班有学生45人,设为达标人数,求
的数学期望与方差;
性别 是否 达标 |
男 |
女 |
合计 |
达标 |
![]() |
![]() |
_____ |
不达标 |
![]() |
![]() |
_____ |
合计 |
______ |
______ |
![]() |
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如右表:
根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附: ,
已知命题:函数
的定义域为R;命题
:方程
有两个不相等的负数根,若
是假命题,求实数
的取值范围
(本小题满分13分
已知函数,
,其中
R
(Ⅰ)讨论的单调性
(Ⅱ)若在其定义域内为增函数,求正实数
的取值范围
(Ⅲ)设函数, 当
时,若
,
,总有
成立,求实数
的取值范围
(本小题满分13分)
已知函数是偶函数
(Ⅰ)求的值;
(Ⅱ)设,若函数
与
的图象有且只有一个公共点,求实数
的取值范围.
(本小题满分13分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.
![]() |
(Ⅰ) 写出图一表示的市场售价与时间的函数关系式P =;
写出图二表示的种植成本与时间的函数关系式Q =;
(Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
(注:市场售价和种植成本的单位:元/kg,时间单位:天)
(本小题满分12分) 一个口袋里有5个白球和3个黑球,任意取出一个,如果是黑球,则这个黑球不放回而另外放入一个白球,这样继续下去,直到取出的球是白球时结束取球。求直到取到白球所需的抽取次数的概率分布列