设函数,
,
(1)若是
的极值点,求
的值;
(2)在(1)的条件下,若存在,使得
,求
的最小值;
(3)若对任意的,
,都有
恒成立,求
的取值范围。
已知不等式.
(1)若不等式的解集为
(2)若不等式的解集为.
已知函数f (x)=x3+(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ)设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.
如图,F1,F2是离心率为的椭圆C:
(a>b>0)的左、右焦点,直线:x=-
将线段F1F2分成两段,其长度之比为1 :3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.
(Ⅰ) 求异面直线EF与BC所成角的大小;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.
已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求数学期望E ( X ).