已知函数f (x)=x3+(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ) 设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.
已知函数f(x)=sin(2x﹣)+2cos2x﹣1(x∈R)
(1)求f(x)的单调递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为b、a、c,若f(A)=,且
•
=9,b,a,c成等差数列,求角A及a的值.
已知等比数列{an}的各项均为正数,且2a1,成等差数列,a2,
,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=log3,记Sn=
,求Sn.
(1)已知在△ABC中,sinA+cosA=,求tanA的值.
(2)已知π<a<2π,cos(α﹣7π)=﹣,求sin(3π+α)•tan(α﹣
π)的值.
已知椭圆C:+
=1(a>b>0)过点(1,
),且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)F1,F2是椭圆C的两个焦点,⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,若•
=﹣
,求k的值.
已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)