已知不等式.
(1)若不等式的解集为
(2)若不等式的解集为.
已知椭圆C的长轴长为,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为,
,求证:
为定值.
(1)观察下列各式:
请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明。
(2)命题,函数
单调递减,
命题上为增函数,若“
”为假,“
”为真,求实数
的取值范围。
为了解目前老年人居家养老还是在敬老院养老的意向,共调查了50名老年人,其中男性明确表示去敬老院养老的有5人,女性明确表示居家养老的有10人,已知在全部50人中随机地抽取1人明确表示居家养老的概率为。
(1)请根据上述数据建立一个2×2列联表;
(2)居家养老是否与性别有关?请说明理由。
参考公式:
参考数据:
![]() |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
已知函数满足:对于任意实数
,都有
恒成立,且当
时,
恒成立;
(1)求的值,并例举满足题设条件的一个特殊的具体函数;
(2)判定函数在R上的单调性,并加以证明;
(3)若函数(其中
)有三个零点
,求
的取值范围.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层(即x=0时),每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值;
(2)求f(x)的表达式;
(3)利用“函数(其中
为大于0的常数),在
上是减函数,在
上是增函数”这一性质,求隔热层修建多厚时,总费用f(x)达到最小,并求出这个最小值.