如图,四边形ABCD为正方形,PD⊥平面ABCD ,PD∥QA,QA=AB=PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的正弦值.
如图,四边形 是边长为 的正方形, , ,且 , 为 的中点.
(1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上是否存在点S,使得 ?若存在,求线段AS的长;若不存在,请说明理由
从集合 的所有非空子集中,等可能地取出一个。
(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;
(2)记所取出的非空子集的元素个数为 ,求 的分布列和数学期望
已知曲线 .从点 向曲线 引斜率为 的切线 ,切点为 .
(1)求数列 的通项公式;
(2)证明:
已知二次函数 的导函数的图像与直线 平行,且 在 处取得极小值 .设 .
(1)若曲线 上的点 到点 的距离的最小值为 ,求 的值;
(2) 如何取值时,函数 存在零点,并求出零点.
已知曲线 与直线 交于两点 和 ,且 .记曲线 在点 和点 之间那一段 与线段 所围成的平面区域(含边界)为 .设点 是 上的任一点,且点 与点 和点 均不重合.
(1)若点 是线段 的中点,试求线段 的中点 的轨迹方程;
(2)若曲线 与点 有公共点,试求 的最小值.