如图是某直三棱柱被削去上底后所得几何体的直观图、左视图、俯视图,在直观图中,M是BD的中点,左视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。
(Ⅰ)求该几何体的体积;
(Ⅱ)求证:EM∥平面ABC;
如图,已知平行六面体ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O。
(Ⅰ)求证:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值。
已知函数(
为常数,
且
),且数列
是首项为4,公差为2的等差数列。
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,当
时,求数列
的前n项和
。
某足球俱乐部2013年10月份安排4次体能测试,规定:按顺序测试,一旦测试合格就不必参加以后的测试,否则4次测试都要参加。若运动员小李4次测试每次合格的概率组成一个公差为的等差数列,他第一次测试合格的概率不超过
,且他直到第二次测试才合格的概率为
。
(Ⅰ)求小李第一次参加测试就合格的概率P1;
(2)求小李10月份参加测试的次数x的分布列和数学期望。
已知函数f(x)=2cos2x―sin(2x―).
(Ⅰ)求函数的最大值,并写出
取最大值时x的取值集合;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=,b+c=2,求实数a的最小值。
已知函数f(x)=在x=0,x=
处存在极值。
(Ⅰ)求实数a,b的值;
(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;
(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。