如图是某直三棱柱被削去上底后所得几何体的直观图、左视图、俯视图,在直观图中,M是BD的中点,左视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。
(Ⅰ)求该几何体的体积;
(Ⅱ)求证:EM∥平面ABC;
如图,在四棱柱中,已知平面
平面
且
,
.
(1)求证:
(2)若为棱
的中点,求证:
平面
.
在△,已知
(1)求角值;
(2)求的最大值.
已知数列具有性质:①
为正数;②对于任意的正整数
,当
为偶数时,
;当
为奇数时,
(1)若,求数列
的通项公式;
(2)若成等差数列,求
的值;
(3)设,数列
的前
项和为
,求证:
已知函数.
(1)当时,指出
的单调递减区间和奇偶性(不需说明理由);
(2)当时,求函数
的零点;
(3)若对任何不等式
恒成立,求实数
的取值范围。
某企业生产某种商品吨,此时所需生产费用为(
)万元,当出售这种商品时,每吨价格为
万元,这里
(
为常数,
)
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.