一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋。(1)求该人在4次投掷中恰有三次投入红袋的概率;(2)求该人两次投掷后得分的数学期望。
设等差数列的前项和为且. (1)求数列的通项公式及前项和公式; (2)设数列的通项公式为,问: 是否存在正整数t,使得成等差数列?若存在,求出t和m的值;若不存在,请说明理由.
已知函数. (1)求的最小正周期和单调增区间; (2)设,求的值域.
如图,以Ox为始边作角α与β() ,它们终边分别单位圆相交于点P、Q,已知点P的坐标为(,). (1)求的值; (2)若·,求.
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且. (1)确定角C的大小: (2)若c=,且△ABC的面积为,求a+b的值.
已知;求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号