设椭圆 C1:(
)的一个顶点与抛物线 C2:
的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率
,过椭圆右焦点 F2 的直线
与椭圆 C 交于 M,N 两点.
(I)求椭圆C的方程;
(II)是否存在直线 ,使得
,若存在,求出直线
的方程;若不存在,说明理由;
(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.
已知函数f (t)=log2(2-t)+的定义域为D.
(1)求D;
(2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.
已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数2m·n-1的最小正周期为π.
(1)求ω的值;
(2)求函数在[
,
]上的最大值.
已知函数(m,n为常数,
…是自然对数的底数),曲线
在点
处的切线方程是
.
(1)求m,n的值;
(2)求的单调区间;
(3)设(其中
为
的导函数),证明:对任意
,
.
已知函数f(x)=ex-ax-1(e为自然对数的底数),a>0.
(1)若函数f(x)恰有一个零点,证明:aa=ea-1;
(2)若f(x)≥0对任意x∈R恒成立,求实数a的取值集合.
记公差不为0的等差数列的前
项和为
,
,
成等比数列.
(1)求数列的通项公式
及
;
(2)若,n=1,2,3,…,问是否存在实数
,使得数列
为单调递减数列?若存在,请求出
的取值范围;若不存在,请说明理由.