从4名男生,3名女生中选出三名代表:
(1)不同的选法共有多少种?
(2)至少有一名女生的不同的选法共有多少种?
(3)代表中男、女生都要有的不同的选法共有多少种?
如图,现要在边长为的正方形
内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为
(
不小于
)的扇形花坛,以正方形的中心为圆心建一个半径为
的圆形草地.为了保证道路畅通,岛口宽不小于
,绕岛行驶的路宽均不小于
.
(1)求的取值范围;(运算中
取
)
(2)若中间草地的造价为元
,四个花坛的造价为
元
,其余区域的造价为
元
,当
取何值时,可使“环岛”的整体造价最低?
如图,在正三棱柱中,
,
分别为
,
的中点.
(1)求证:平面
;
(2)求证:平面平面
.
在中,角
,
,
所对的边分别是
,
,
,已知
,
.
(1)若的面积等于
,求
,
;
(2)若,求
的面积.
已知函数,
,
,其中
,且
.
⑴当时,求函数
的最大值;
⑵求函数的单调区间;
⑶设函数若对任意给定的非零实数
,存在非零实数
(
),使得
成立,求实数
的取值范围.
已知函数.
(Ⅰ)若,且对于任意
恒成立,试确定实数
的取值范围;
(Ⅱ)设函数,
求证: