(本小题满分12分)如图,在四棱锥P-ABCD的底面是边长为2的正方形,
PD⊥平面ABCD,E、F分别是PB、AD的中点,PD=2.
(1)求证:BC⊥PC;
(2)求证:EF//平面PDC;
(3)求三棱锥B—AEF的体积。
(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.
已知函数;
,
(1)当为偶函数时,求
的值。
(2)当时,
在
上是单调递增函数,求
的取值范围。
(3)当时,(其中
,
),若
,且函数
的图像关于点
对称,在
处取得最小值,试探讨
应该满足的条件。
(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.
已知集合具有性质
:对任意
,
与
至少一个属于
.
(1)分别判断集合与
是否具有性质
,并说明理由;
(2)①求证:;
②求证:;
(3)研究当和
时,集合
中的数列
是否一定成等差数列.
(本大题满分14分)
已知中心在原点,顶点A1、A2在x轴上,其渐近线方程是,双曲线过点
(1)求双曲线方程
(2)动直线经过
的重心G,与双曲线交于不同的两点M、N,问:是否存在直线
,使G平分线段MN,证明你的结论
本题共有2个小题,第1小题满分4分,第2小题满分8分.
已知,函数
.
(Ⅰ)当时,求使
成立的
的集合;
(Ⅱ)求函数在区间
上的最小值.
(本题满分12分,每一问6分)
如图,弧是半径为
的半圆,
为直径,点
为弧
的中点,点
和点
为线段
的三等分点,线段
与弧
交于点
,且
,平面
外一点
满足
平面
,
。
⑴证明:;
⑵ 将(及其内部)绕
所在直线旋转一周形成一几何体,求该几何体的体积。