已知函数
(Ⅰ)求的单调减区间;
(Ⅱ)若在区间[-2,2].上的最大值为20,求它在该区间上的最小值
调查某市出租车使用年限和该年支出维修费用
(万元),得到数据如下:
使用年限![]() |
2 |
3 |
4 |
5 |
6 |
维修费用![]() |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
(1)求线性回归方程;
(2)由(1)中结论预测第10年所支出的维修费用.()
如图是求的算法的程序框图.
(1)标号①处填.
标号②处填.
(2)根据框图用直到型(UNTIL)语句编写程序.
函数的图象如下图所示.
(1)求解析式中的值;
(2)该图像可由的图像先向_____(填“左”或“右”)平移_______个单位,
再横向拉伸到原来的_______倍.纵向拉伸到原来的______倍得到.
已知,
.
(1)判断的奇偶性并加以证明;
(2)判断的单调性并用定义加以证明;
(3)当的定义域为
时,解关于m的不等式
.
探究函数的图像时,.列表如下:
x |
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
y |
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.02 |
4.04 |
4.3 |
5 |
5.8 |
7.57 |
… |
观察表中y值随x值的变化情况,完成以下的问题:
⑴函数的递减区间是 ,递增区间是 ;
⑵若对任意的恒成立,试求实数m的取值范围.