.(本小题满分14分)
设函数(
为自然对数的底数),
(
).
(1)证明:;
(2)当时,比较
与
的大小,并说明理由;
(3)证明:(
).
已知一圆经过点,
,且它的圆心在直线
上.
(1)求此圆的方程;
(2)若点为所求圆上任意一点,且点
,求线段
的中点
的轨迹方程.
(本小题满分13分)已知△的两个顶点
的坐标分别是
,且
所在直线的斜率之积等于
.
(1)求顶点的轨迹
的方程,并判断轨迹
为何种曲线;
(2)当时,点
为曲线 C上点, 且点
为第一象限点,过点
作两条直线与曲线C交于
两点,直线
斜率互为相反数,则直线EF斜率是否为定值,若是,求出定值,若不是,请说明理由.
(本小题满分13分)如图,椭圆的离心率为
,
轴被曲线
截得的线段长等于
的短轴长。
与
轴的交点为M,过坐标原点O的直线
与
相交于点A、B.
(1)求,
的方程;
(2)求证:MA⊥MB.
(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,
(1)证明:平面平面
;
(2)若,
, 令AE与平面ABCD所成角为
, 且
, 求该四棱锥
的体积.
(本小题满分12分)已知双曲线, 若双曲线的渐近线过点
, 且双曲线过点
(1)求双曲线的方程;
(2)若双曲线的左、右顶点分别为
,点
在
上且直线
的斜率的取值范围是
,求直线
斜率的取值范围.