一个棱长为的正方体的八个顶角上分别截去一个三棱锥,使截掉棱锥后的多面体有六个面为正八边形,八个面为正三角形(如图所示),
(1)求异面直线与
所成角的大小;
(2)求此多面体的体积(结果用最简根式表示).
如图,中
,平面
外一条线段AB满足AB∥DE,AB
,AB⊥AC,F是CD的中点.
(1)求证:AF∥平面BCE
(2)若AC=AD,证明:AF⊥平面
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖,.求a和b至少有一人上台抽奖的概率;
已知椭圆的离心率与双曲线
的离心率互为倒数,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设第(2)问中的与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
如图,已知四棱锥中,底面
为菱形,
平面
,
,
分别是
的中点.
(1)证明:平面
;
(2)取,若
为
上的动点,
与平面
所成最大角的正切值为
,求二面角
的余弦值。
已知命题“存在
”,命题
:“曲线
表示焦点在
轴上的椭圆”,命题
“曲线
表示双曲线”
(1)若“且
”是真命题,求
的取值范围;
(2)若是
的必要不充分条件,求
的取值范围。