游客
题文

一个棱长为的正方体的八个顶角上分别截去一个三棱锥,使截掉棱锥后的多面体有六个面为正八边形,八个面为正三角形(如图所示),
(1)求异面直线所成角的大小;
(2)求此多面体的体积(结果用最简根式表示).

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图,,平面外一条线段AB满足AB∥DE,AB,AB⊥AC,F是CD的中点.

(1)求证:AF∥平面BCE
(2)若AC=AD,证明:AF⊥平面

某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖,.求a和b至少有一人上台抽奖的概率;

已知椭圆的离心率与双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)设第(2)问中的轴交于点,不同的两点上,且满足,求的取值范围.

如图,已知四棱锥中,底面为菱形,平面分别是的中点.

(1)证明:平面
(2)取,若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”
(1)若“”是真命题,求的取值范围;
(2)若的必要不充分条件,求的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号