游客
题文

某地举办乒乓球比赛的费用(元)包括两部分:一部分是租用比赛场地等固定不变的费用(元),另一部分费用与参加比赛的人数(人)成正比。当=20时,=1600;当=30时,=2000;
1)求之间的函数关系式
2)如果承办此次比赛的组委会共筹集到经费6250元,那么这次比赛最多可邀请多少名运动员参赛?

科目 数学   题型 解答题   难度 较易
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,四边形 ABCD 是正方形, E F 分别是 AB AD 上的一点,且 BF CE ,垂足为 G ,求证: AF = BE

如图,抛物线 y = a x 2 3 2 x 2 ( a 0 ) 的图象与 x 轴交于 A B 两点,与 y 轴交于 C 点,已知 B 点坐标为 ( 4 , 0 )

(1)求抛物线的解析式;

(2)试探究 ΔABC 的外接圆的圆心位置,并求出圆心坐标;

(3)若点 M 是线段 BC 下方的抛物线上一点,求 ΔMBC 的面积的最大值,并求出此时 M 点的坐标.

如图, ΔABC ΔADE 是有公共顶点的等腰直角三角形, BAC = DAE = 90 ° ,点 P 为射线 BD CE 的交点.

(1)求证: BD = CE

(2)若 AB = 2 AD = 1 ,把 ΔADE 绕点 A 旋转,当 EAC = 90 ° 时,求 PB 的长;

某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为 x ( x 为正整数),每个月的销售利润为 y 元.

(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?

(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

如图,在 ΔABC 中, C = 90 ° ,点 O AC 上,以 OA 为半径的 O AB 于点 D BD 的垂直平分线交 BC 于点 E ,交 BD 于点 F ,连接 DE

(1)判断直线 DE O 的位置关系,并说明理由;

(2)若 AC = 6 BC = 8 OA = 2 ,求线段 DE 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号