如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
如图,,
为圆柱
的母线,
是底面圆
的直径,
,
分别是
,
的中点,
.
(1)证明:;
(2)证明:;
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥内会有被捕的危险,求鱼被捕的概率.
已知椭圆的左右顶点分别为
,离心率
.
(1)求椭圆的方程;
(2)若点为曲线
:
上任一点(
点不同于
),直线
与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
已知实数,且
按某种顺序排列成等差数列.
(1)求实数的值;
(2)若等差数列的首项和公差都为
,等比数列
的首项和公比都为
,数列
和
的前
项和分别为
,且
,求满足条件的自然数
的最大值.
某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:
(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份试卷的分数在
之间的概率;
(3)根据频率分布直方图估计这次测试的平均成绩.
已知,且
.
(1)试利用基本不等式求的最小值
;
(2)若实数满足
,求证:
.