如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
已知数列{an}满足a1=2,an+1=an-.
(1)求数列{an}的通项公式;
(2)设bn=nan·2n,求数列{bn}的前n项和Sn
已知函数
(1)当时,求不等式
的解集;
(2)若在
上恒成立,求
的取值范围。
在△ABC中,已知cos A=.
(1)求sin2-cos(B+C)的值;
(2)若△ABC的面积为4,AB=2,求BC的长.
若不等式的解集是
,
(1) 求的值;
(2) 求不等式的解集.
定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f (x)=.
(1)求f (x)在[-1, 1]上的解析式;
(2)证明f (x)在(—1, 0)上时减函数;
(3)当λ取何值时, 不等式f (x)>λ在R上有解?