定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f (x)=.
(1)求f (x)在[-1, 1]上的解析式;
(2)证明f (x)在(—1, 0)上时减函数;
(3)当λ取何值时, 不等式f (x)>λ在R上有解?
甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
频数 |
2 |
3 |
10 |
15 |
分组 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
15 |
x |
3 |
1 |
甲校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
频数 |
1 |
2 |
9 |
8 |
分组 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
10 |
10 |
y |
3 |
乙校:
(Ⅰ)计算x,y的值。
甲校 |
乙校 |
总计 |
|
优秀 |
|||
非优秀 |
|||
总计 |
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异。
P(k2>k0) |
0.10 |
0.025 |
0.010 |
K |
2.706 |
5.024 |
6.635 |
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
已知数列的前
项和为
,且
是
与2的等差中项,数列
中,
,点
在直线
上。
(Ⅰ) 求数列的通项公式
和
;
(Ⅱ) 设,求数列
的前n项和
。
如图,已知椭圆C:的左、右焦点为
,其上顶点为
.已知
是边长为
的正三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线
交椭圆C于
两点,记
若在线段
上取一点
使得
,试判断当直线
运动时,点
是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.
已知函数
(Ⅰ)若,
;
(Ⅱ)已知为
的极值点,且
,若当
时,函数
的图象上任意一点的切线斜率恒小于
,求
的取值范围.