如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
已知 是一个等差数列,且 .
(Ⅰ)求 的通项
(Ⅱ)求 前 项和 的最大值.
已知A、B、C为三个锐角,且A+B+C=π.若向量=(2-2sinA,cosA+sinA)与向量=(cosA-sinA,1+sinA)是共线向量.(Ⅰ)求角A;(Ⅱ)求函数y=2sin2B+cos的最大值.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.
(Ⅰ)若△ABC的面积S=,求b+c的值.(Ⅱ)求b+c的取值范围.
已知=(cosx+sinx,sinx),=(cosx-sinx,2cosx),(Ⅰ)求证:向量与向量不可能平行;(Ⅱ)若f(x)=·,且x∈[-,]时,求函数f(x)的最大值及最小值.
△ABC的角A、B、C的对边分别为a、b、c,=(2b-c,a),=(cosA,-cosC),且⊥.(Ⅰ)求角A的大小;(Ⅱ)当y=2sin2B+sin(2B+)取最大值时,求角的大小.