锐角三角形ABC的内角A,B,C的对边分别为
(1)求B的大小;
(2)求的取值范围.
对于给定数列,如果存在实常数
使得
对于任意
都成立,我们称数列
是 “线性数列”.
(1)若,
,
,数列
、
是否为“线性数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(2)证明:若数列是“线性数列”,则数列
也是“线性数列”;
(3)若数列满足
,
,
为常数.求数列
前
项的和.
在数列{an}中,a1=,an+1=
,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.
有6名男医生,4名女医生.
(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,共有多少种不同方法?
(2)把10名医生分成两组,每组5人且每组都要有女医生,则有多少种不同分法?若将这两组医生分派到两地去,并且每组选出正副组长两人,又有多少种不同方案?
复数,若
,求
的值.
设和
是函数
的两个极值点,其中
,
.
(1)若曲线在点
处的切线垂直于
轴,求实数
的值;
(2)求的取值范围;
(3)若,求
的最大值(
是自然对数的底数).