如图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点。
(1)求证:;
(2)求二面角D—CB1—B的平面角的正切值。
如图,已知
的两条角平分线
和
相交于
,
,
在
上,且
.
(Ⅰ)证明:
、
、
、
四点共圆;
(Ⅱ)证明:
平分
.
在极坐标系下,已知圆O:和直线
,
(1)求圆O和直线的直角坐标方程;
(2)当时,求直线
与圆O公共点的一个极坐标.
对于任意实数和
,不等式
恒成立,试求实数
的取值范围.
已知函数
(1)若函数在定义域内单调递增,求
的取值范围;
(2)若且关于x的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)设各项为正的数列满足:
求证:
如图,⊙的直径
的延长线与弦
的延长线相交于点
,
为⊙
上一点,AE=AC ,
交
于点
,且
,
(1)求的长度.
(2)若圆F且与圆内切,直线PT与圆F切于点T,求线段PT的长度