一边长为的正方形铁片,铁片的四角各截去一个边长为的小正方形,然后做成一个无盖方盒.(Ⅰ)试把方盒的体积表示为的函数;(Ⅱ)多大时,方盒的体积最大?
设直线与直线交于点. (1)当直线过点,且与直线垂直时,求直线的方程; (2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.
如果实数满足求: (1)的最值; (2)的最大值.
已知全集,集合,集合; (1)求集合、; (2)求.
已知函数,在时取得极值. (Ⅰ)求函数的解析式; (Ⅱ)若时,恒成立,求实数m的取值范围; (Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
在数列中,,且. (Ⅰ) 求,猜想的表达式,并加以证明; (Ⅱ)设,求证:对任意的自然数都有.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号