.(本小题满分14分)
直棱柱 中,底面 ABCD是直角梯形,∠ BAD=∠ ADC=90°,
.
(Ⅰ) 求证: AC⊥平面 BB 1 C 1 C;
(Ⅱ)若P为 A 1 B 1的中点,求证: DP∥平面 BCB 1,且 DP∥平面 ACB 1.
已知函数f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差数列.
(1)求实数m的值;
(2)若a、b、c是两两不相等的正数,且a、b、c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.
已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.(扇形面积S=Rl,其中R为扇形半径,l为弧长)
数列{an},Sn为它的前n项的和,已知a1=-2,an+1=Sn,当n≥2时,求:an和Sn.
判断函数f(x)=在区间(1,+∞)上的单调性,并用单调性定义证明.
已知集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值.