游客
题文

设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.
(1)求椭圆的离心率;
(2)若过三点的圆恰好与直线相切,求椭圆的方程;
(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得,如果存在,求出的取值范围,如果不存在,说明理由。

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

(本小题满分12分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体
1000名学生中随机抽取了若干名学生的体检表,并得到如下直方图:

(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的
人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有
关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:

年级名次
是否近视



1~50
951~1000
近视
41
32
不近视
9
18


根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良
好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为,求的分布列和数学期
望.
附:

P(K2≥k)
0.10
0.05
0.025
0.010
0.005
k
2.706
3.841
5.024
6.635
7.879


(本小题满分12分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足.
(Ⅰ)求B;
(Ⅱ)若,设,求函数的解析式和最大值.

已知函数,,(为常数).
(Ⅰ)若处的切线过点,求的值;
(Ⅱ)设函数的导函数为,若关于的方程有唯一解,求实数的取值范围;
(Ⅲ)令,若函数存在极值,且所有极值之和大于,求实数的取值范围.

已知椭圆上的左、右顶点分别为为左焦点,且,又椭圆过点
(Ⅰ)求椭圆的方程;
(Ⅱ)点分别在椭圆和圆上(点除外),设直线,的斜率分别为,,若,证明:,,三点共线.

已知等比数列的前项和,且成等差数列.
(Ⅰ)求的通项公式;
(Ⅱ)设是首项为,公差为的等差数列,其前项和为,求满足的最大正整数

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号