在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查. 如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.
(1)请问:甲商场的用户满意度分数的众数为 ;
乙商场的用户满意度分数的众数为 .
(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).
(3)请你根据所学的统计知识,判断哪家商场的用户满意度较高,并简要说明理由.
已知:如图是破铁轮的轮廓,请用直尺和圆规作出它的圆心。
如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.
(1)求b,c的值。
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.
(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.
如图,为⊙O的直径,
为弦,且
,垂足为
.
(1)如果⊙O的半径为4,
,求
的度数;
(2)若点为的中点,连结
,
.求证:
平分
;
(3)在(1)的条件下,圆周上到直线距离为3的点有多少个?并说明理由.
正方形网格中,为格点三角形(顶点都是格点),将
绕点
按逆时针方向旋转
得到
.
(1)在正方形网格中,作出;
(2)设网格小正方形的边长为1,求旋转过程中动点B经过的路线长和AC
所扫过的面积.
某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x.
(1)写出商场卖这种商品每天的销售利润y(元)与x(元)间的函数关系式,并写出x的取值范围;
(2)若商场要使每天获得的利润最大,每件商品的售价定为多少?