某市居民自来水收费标准如下:每户每月用水量不超过4吨时,按每吨1.8元收费;当每户每月用水量超过4吨时,其中4吨按每吨为1.8元收费,超过4吨的部分按每吨3.00元收费。设每户每月用水量为吨,应交水费
元。
(Ⅰ)求关于
的函数关系;
(Ⅱ)某用户1月份用水量为5吨,则1月份应交水费多少元?
(Ⅲ)若甲、乙两用户1月用水量之比为,共交水费26.4元,分别求出甲、乙两用户该月的用水量和水费。
已知两个力F1、F2的方向互相垂直,且它们的合力F大小为10N,与力F1的夹角是60°,求力F1、F2的大小.
设a表示“向西走2km”,b表示“向北走2km”,则a+b表示向哪个方向行走了多少?
已知函数f(x)=Acos(ωx+φ)+b(A>0,ω>0,|φ|<)在同一个周期内的图象上有一个最大值点A
和一个最小值点B
.
(1)求f(x)的解析式;
(2)经过怎样的平移和伸缩变换可以将f(x)的图象变换为g(x)=cosx的图象.
已知函数f(x)=2sin+a(其中a为常数).
(1)求f(x)的单调区间;
(2)当x∈时,f(x)的最大值为4,求a的值;
(3)求出使f(x)取最大值时x的取值集合.
已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M对称,且在区间
上是单调函数,求ω和φ的值.